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ABSTRACT

A large number of cameras may be modeled quite accurately using
the simple pinhole camera model, which may be defined either in
terms of camera parameters or by the ¢ matrix {(which defines the
mapping from 3D points to the image plane). We present formulations
of the associated transformations between these two equivalent
representations. We also introduce an inexpensive technique for
caliprating a camera using a single two-plane calibration object, and
employ a novel high-precision Hough transtorm technique for de-
termining calibration grid lines. © 1994 John Wiley & Sons, inc.

1. INTRODUCTION

A camera model is, as its name suggests, an attempt to model
the imaging function of a camera. That is, it is a model of the
relationship between the viewed image on the camera’s sensor
elements and “real” 3D world {(which is the source of the
image). The camera model is comprised of two distinct sets of
parameters; the intrinsic parameters, which specify the inter-
nal geometry of the camera, and the extrinsic parameters,
which specify the camera’s position and orientation with
respect to some frame of refercnce in the real world. Several
models of varying complexity have been proposed, from
simple orthographic projection to more complex perspective
models which take into account possible lens distortion [1].

In certain instances use of a complex camera model is
obviously preferable {e.g., if the camera exhibits significant
distortions, or if the task requires extremely high precision).
However, in many situations a simple camera model is quite
sufficicnt. In this article we present the simple pinhole camera
model (as described in [2] and [3]), and, more importantly,
formulas for converting between the two different representa-
tions of the model. Additionally, an inexpensive* method of
camera calibration is presented using a single view of a
calibration object.

. SIMPLE PINHOLE CAMERA MODEL

The simple pinhole camera model models perspective effects
but does not model any form of distortion. It can be specified
in one of two ways.

* The calibration technique is inexpensive from a financial point of view, in
that it does not require the use of a Z stage.

Received 27 August 1991; revised manuscript received 22 December 1992

International Journal of Imaging Systems and Technology, Vol. 5, 1-6 (1994)
© 1994 John Wiley & Sons, Inc.

(1) In terms of the ¢ matrix, which transforms 3D real-
world points (x, y, z) to the image plane [i.e., as (I, J)
points]:
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where I =i/t and J = j/t.

(2) Explicitly in terms of the intrinsic and extrinsic camera
paramcters. The intrinsic parameters of the simple pinhole
camera model may be considered in terms of the sensor
resolutions s, and s, in the [ and J directions, respectively, the
focal length f, and the image center (i, j.). The extrinsic
camera parametcrs may bc expressed in terms of a homoge-
neous transformation which specifies the position {or transla-
tion T) and the orientation (or rotation R) of the camera:
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Each form of representation may be computed from the
other, and those transformations are detailed in the sections
which follow.

A. Determining the ¢ Matrix from Camera Parameters
The ¢ matrix may be determined from the camera parameters,
quite simply, as follows:
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B. Determining Camera Parameters from the ¢ Matrix
Calculating camera parameters from the ¢ transformation -
matrix is not as straightforward, but may be performed as

follows.
Firstly, it should be noted that the ¢ transformation can be

considered in terms of three plane equations (see fig. 1) by
simply multiplying the two matrices on the left-hand side of

Eq. (1):
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Figure 1. The three planes which are defined in the C camera
transformation matrix.
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If 1=0 then the point computed by the camera model is
undefined. This only occurs when the 3D point [i.e., (x, y, z)]
is in the plane parallel to the image plane through the focal
point of the camera, and hence, from eq. {3), this plane is:

Cy X+ €y + €552+ 05, =0, 4

It is also quite simple to extract the plane in which i = 0.
From Eq. (3) it is

cpx+epyteon,zte,=0, (5

Similarly, the plane in which j=0 is
CyX + €y + 52+ ¢, =0, (6)
These three planes (i.e., that which is parallel to the image
plane, through the focal point of the camera, that which
includes all points that map to i =0, and that which includes

all points that map to j =0) all include the focal point of the
camcra, so the focal point of the camera may be determined
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Figure 2. Geometry used in order to calculate the sensor res-
olutions to focal length ratios.

directly behind the focal point. This is done by determining an
arbitrary point directly in front of the focal point (by translat-
ing the focal point by an arbitrary distance in the direction
perpendicular to the image plane) and mapping the point onto
the image plane using the inverse perspective transformation
(see Sec. I1.C).

The orientation of the camera may also be readily calcu-
lated at this juncture. The plane which is parallc] to the focal
point indicates the direction of the focal axis and either of the
other two plane equations (i.e., those from which all points
map to imagc points with i=0 or j=0) may be used to
determine the camera rotation around the focal axis.

The only remaining camera parameters, which have not yet
been determined, are thosc of the focal length ( f) and sensor
resolution (s; and s;). In fact, only the ratios between them
may be calculated (as it is only the ratio between them that is
used in determining the simple pinhole camcra model, and
hence the ¢ matrix). Consider the geometry shown in Fig. 2.
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simply by calculating the interscction of the three planes. (10)
Solving Eqs. (4)-(6) for x, y, and z we get*:
_ (€33€12 = €33¢13M(€33€04 = €34C53) — (€33€22 = €35€23)(€33€ 14 = €34€135) ')
- >
(€33€22 = €32€23)(€33€1; = €,,€C3) = (33655 = €32€13)(€33€21 ~ €34C53)
_ (€31613 = €11€33)(€31C24 — €3,C34) = (€30€23 = €21€33)(€31€14 = €,:C34) (8)
(€31€23 = €31€33)(€3, €13 = €4,€5,) — (31613 = €11€33)(€35€22 — €31€32)
7= (€31€22 = €132 )(€3:€10 = €,€35) — (€31€13 = €11€1)(€21Caq = €34C24) ©)
(€31€12 = €11 €3 (€453 — €3,C53) — (€31€32 = €3,€33)(€31€y5 = €1,C33)
As the focal point of the camera and a plane equation .
which is parallel to the image plane are both known, it is tYi _tan 6 (1
. . A tan 6,
possible to calculate the point on the image planc which is f
s _tand, (12)
* 1t should be noted that the listed formulae are only onc of three possibili- f [

ties, depending on how the equations are solved. If any of these formulac fail
{due to a division by zero), one of the two alternatives will always succeed.
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Similarly,
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where v,—v; are the lengths of the vectors pertaining to the
various plane equations,

v = VC?I +C?z+“f3» (16)
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Finally, the ratio between sensor resolutions in the / and J
directions may be calculated by combining Eqgs. (12) and (13),
giving
J.tan 6,
i tang,

s,
5 (19)
C. Inverse Perspective Transformation. For completeness
we must also consider the mapping from points on the image
plane into the real world (i.e., the inverse perspectivc trans-
formation). A single view of a 3D point on an image plane is
insufficient to allow the 3D coordinates of the point to be
computed. This is caused by the loss of information inherent
in the viewing process (which transforms 3D points to 2D
points). However, it is possible for any image point (i, j) to
generate a 3D vector (x,, y,, z,) from the focal point of the
camera along which the 3D point correspending to (¢, j) will
lie. This may be done through the use of the inverse perspec-
tive transformation, which may be defined by a simple 4 x 3
matrix p as follows:
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The inverse perspective matrix p may be derived from the
camera parameters:
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lil. CAMERA CALIBRATION
Camera calibration, in the context of 3D vision, is the process
of determining both* the intrinsic and the extrinsic parameters

"In somc instances it is necessary to calculate only the intrinsic or the
extrinsic parameters {e.g., see [4]).

The calibration cbject employed.

Figura 3.

of a given camera. In order to accurately calibrate both the
intrinsic and the extrinsic parameters of a camera, points
which are distributed in three dimensions (i.e., are not simply
coplanar) must be viewed using the camera (e.g., see [1, 5]).
The relationships between the viewed 2D points and the 3D
points are then used to calibrate the camera.

The calibration points are typically obtained using a planar
grid, and a Z stage, in order to view the points (which are
already distributed in X and Y) at several different values of
Z. This is done, rather than use a single calibration object
with noncoplanar points, because the fabrication of such
objects is difficult {6]. However, in any 3D vision applications
it is important to be able to limit cost, and the additional
expense of a Z stage may be prohibitive. Hence, the possi-
bility of using a single calibration object with points distribut-
ed in 3D (i.e., not simply coplanar) is investigated in this
research.

A. Calibration Object. A calibration object was constructed,
consisting of a checkerboard grid which was folded {at one of
the grid lines) over a right angle (see Fig. 3). The calibration
points were those at the corners of the grid boxes. The
right-angle fold in the grid allows the points to be distributed
in more than a single plane, but at the same time allows
calculation of the relative 3D coordinates of the calibration
points to remain trivial. Also, for the sake of automatic
association of 3D point data with the viewed calibration
points, a white dot was drawn on one of the black grid boxes.

B. Determining grid points. Bearing in mind that the sim-
ple pinhole camera model is being assumed to be valid, it can
also be assumed that the grid lines will appear straight in any
image of the calibration object. Now, in order to make the
determination of the grid points robust in the presence of
possible marks on the grid or noisc in the imaging process, the
grid lines are located first, and then the relevant grid points
are computed from the intersection of these lines. This search,

' An image of the calibration grid could be considered to be the grid in one of
two different oricntations, were the white dot not present.
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Figure 4. High precision determination of lines using the Hough
transform. This figure shows fifteen different regions of Hough spacs,
corresponding to the regions around the lines determined in the first
stage of Hough transform (see text). in each case r is aiong the
vertical axis, and ¢ is along the horizontal. The first five regions of
Hough space shown {the four on the first line and the first on the
second line) correspand 1o the grid lines which are parallel to the right
angle edge of the calibration object. The other ten Hough spaces
correspond to the lines which are orthogonal (in 3-D) to that edge.

for the grid lines, may be performed using the Hough trans-
form for lines (e.g., see [7, 3]).

Unfortunately, in order for the lines to be identified with
sufficient accuracy for the calibration task at hand, the Hough
accumulator would have to be prohibitively large. To over-
come this a two-stage Hough transform is used. In the first
stage lines are roughly approximated, while in the second
stage a high-precision Hough transform [which considers only
a subspace of the Hough (#, ¢) accumulator*] is employed in
order to tune the values of each detcrmined grid line. By
constraining the search for edge points to a specific region of
the image, for each grid linc, the Hough accumulators shown
in Fig. 4 are determined. The (7, ¢) pair corresponding to the
line is identified as the center of the narrowest ¢ column (i.e.,
the column with the thinnest section of active cells; see Fig,
4).

The grid lines and points determined are shown in Fig. 5.
The white dot is also identified, and hence the 3D coordinates
of the grid points (which are already known, as the calibration
grid defines the frame of reference used) may be automatical-
ly associated with the viewed calibration points.

C. Mathematics of Calibration. Having determined a map-
ping from a number of 3D points to a number of 2D image
points, the determination of the camera model may now be
addressed.”

The transformation which maps any three-dimensional
point (x, y, z) to the corresponding image point (4, J) may be

* Note that the coordinates in the Hough space, i.e., the line parameters r
and ¢, represent the normal distance of the line to the origin and the angle that
this normal makes with the horizontal, respectively.

" The mathematics listed in this section is taken from the text Machine Vision
by David Vernon, with permission of the publishers, Prentice-Hall Interna-
tional.
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Flgure 5. The grid lines and points determined for a sampie
calibration image. Note also that the white dot is identified, in order to
determine the orientation of the grid.

defined as follows (see Sec. II):
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where
i
1= e (23)
I= ﬁ . (24)
Expanding Eq. (22):

CpXtepyteopzte,=i, (25)
CyX T Cpy+epzte,, =7, (26)
CyX + €Y+ 3z + 03, =t. (27)

But by rearranging Eq. (23) and {24) we know that
i=1, (28)
j=Je, (29)

Hence

cuxtepytepzte,—loyx — e,y — leyyz — Ic,, =0,
(30)
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(31

Overall scaling of the transformation matrix is irrelevant,
SO that c¢,, may arbitrarily be set to 1. At the same time
completing Eq. (30) and (31), we get
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We have 11 unknowns at this stage and in order to determine values for them we need at least 11 e

(32)
(33)

quations. For any

three-dimensional point to two-dimensional image plane point mapping we obtain two equations [(32) and (33)], so at least six
points are needed* in order to solve for the values of the transformation matrix. This allows us to reformulate as follows:
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. . Average determined
Taking the pseudoinverse, we may then determine c: Measured distance  value Standard deviation (o)
- . 4
c=(X"X)"'XTy. (36)  S00mm 59.96 mm 0.40 mm

Finally, we note that Eq. (36) must be solved numerically,
as it is not practical to solve it algebraically.

D. Determining the Accuracy of the Calibration. In order
to evaluate the accuracy of the calibration several different
measures are calculated:

(1) Variance in the internal camera parameters. These
variances, to some extent, measure the repeatability
of the calibration. See Table 1.

(ii) Accuracy with which the calibration points arc mod-
eled. This measure is extremely important, as it is
indicative of how accurately the simple pinhole ca-
mera model represents the imaging process. See

Table I1.
Table 1
Parameter Average value Standard deviation (o)
Image center (i, j,) (253.00, 258.23) 3.25 pixels
Aspect ratio s,/s, 0.684 42 0.000 35

Table IT

Standard deviation (o)

0.2852 pixels

Parameter

Distance between imaged and
modeled calibration points

* It is possible to use more than six points when determining the ¢ trans-
formation matrix and, in fact, is advisable so to do, so that a good lcast-squares
€rror may he obtained.

(iif) Length measurements. Finally, perhaps the most im-
portant measure of all is how accurately distances in
the real world may be measured. In order to perform
this experiment, two diffcrent cameras which viewed
the same scenc were used, hoth were calibrated and
the three-dimensional point data was calculated using
stereo vision techniques.” On the basis of 240 mea-
surements the results were as shown in Table IIL.

Assuming a normal distribution, 95% of the values will be

within 2 times the standard deviation, giving an approximate
accuracy of 1 part in 75.

IV. SUMMARY

Transformations between the ¢ matrix and the camera param-
eters of the simple pinhole camera model are presented.
Additionally, & camera calibration technique using a single
view of a two-plane calibration object is introduced and,
experimentally, is found to be rcasonably accurate (i.e., it
allows determination of distances to within 1 part in 75).
While more accurate camera models and calibration tech-
niques exist (¢.g., [1]), the accuracy achieved using this simple
camera model and this inexpensive calibration technique
would appear to be sufficient for a reasonably wide variety of
applications.
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