Difference between revisions of "Cognitive Robotics Lecture Schedule"
From David Vernon's Wiki
Line 1: | Line 1: | ||
+ | Mini 1: Cognitive Robotics: Foundations | ||
<small> | <small> | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 153: | Line 154: | ||
|Vernon (1991), Sections 8.1-8.4 | |Vernon (1991), Sections 8.1-8.4 | ||
|Implement a program to move light cube from one position/pose to another position/pose | |Implement a program to move light cube from one position/pose to another position/pose | ||
+ | |||
+ | Mini 2: Cognitive Robotics: Principles and Practice | ||
+ | |||
+ | {| class="wikitable" | ||
+ | ! scope="col" style="width: 8%;" | Date | ||
+ | ! scope="col" style="width: 3%;" | Lecture | ||
+ | ! scope="col" style="width: 15%;" |Topic | ||
+ | ! scope="col" style="width: 40%;" | Material covered | ||
+ | ! scope="col" style="width: 10%;" | Required hardware | ||
+ | ! scope="col" style="width: 9%;" | Required software | ||
+ | ! scope="col" style="width: 12%;" | Reading | ||
+ | ! scope="col" style="width: 13%;" | Homework exercises | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 1 |
|Cognitive architectures I | |Cognitive architectures I | ||
|Role and requirements; cognitive architecture schemas; example cognitive architectures including Soar, ACT-R, Clarion, LIDA, and ISAC. The Standard Model. | |Role and requirements; cognitive architecture schemas; example cognitive architectures including Soar, ACT-R, Clarion, LIDA, and ISAC. The Standard Model. | ||
Line 172: | Line 185: | ||
|CRAM test programs | |CRAM test programs | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 2 |
|Cognitive architectures III | |Cognitive architectures III | ||
|Knowledge representation, processing, and reasoning. | |Knowledge representation, processing, and reasoning. | ||
Line 181: | Line 194: | ||
|OpenEASE test programs | |OpenEASE test programs | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 3 |
|Learning and development I | |Learning and development I | ||
|Supervised, unsupervised, and reinforcement learning. Hebbian learning. | |Supervised, unsupervised, and reinforcement learning. Hebbian learning. | ||
Line 190: | Line 203: | ||
|Hebbian learning | |Hebbian learning | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 4 |
|Learning and development II | |Learning and development II | ||
|Predictive sequence learning (PSL). | |Predictive sequence learning (PSL). | ||
Line 199: | Line 212: | ||
|PSL test programs | |PSL test programs | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 5 |
|Learning and development III | |Learning and development III | ||
|Learning from demonstration | |Learning from demonstration | ||
Line 208: | Line 221: | ||
|PSL test programs | |PSL test programs | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 6 |
|Learning and development IV | |Learning and development IV | ||
|Cognitive development in humans and robots. Value systems for developmental and cognitive robots. | |Cognitive development in humans and robots. Value systems for developmental and cognitive robots. | ||
Line 217: | Line 230: | ||
| | | | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 7 |
|Memory and Prospection | |Memory and Prospection | ||
|Declarative vs. procedural memory. Semantic memory. Episodic memory | |Declarative vs. procedural memory. Semantic memory. Episodic memory | ||
Line 226: | Line 239: | ||
|Implementation of episodic memory on Cozmo | |Implementation of episodic memory on Cozmo | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 8 |
|Internal simulation I | |Internal simulation I | ||
|Episodic future thinking. Forward and inverse models. Internal simulation hypothesis, Internal simulation with PSL | |Episodic future thinking. Forward and inverse models. Internal simulation hypothesis, Internal simulation with PSL | ||
Line 235: | Line 248: | ||
|PSL test programs | |PSL test programs | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 9 |
|Internal simulation II | |Internal simulation II | ||
|HAMMER cognitive architecture | |HAMMER cognitive architecture | ||
Line 244: | Line 257: | ||
|HAMMER tutorial using the ICL library | |HAMMER tutorial using the ICL library | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 10 |
|Social interaction I | |Social interaction I | ||
|Joint action. Joint attention. Shared intention. Shared goals. Perspective taking. Theory of mind. | |Joint action. Joint attention. Shared intention. Shared goals. Perspective taking. Theory of mind. | ||
Line 253: | Line 266: | ||
|Perspective taking using the ICL library. | |Perspective taking using the ICL library. | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 11 |
|Social interaction II | |Social interaction II | ||
|Action and intention recognition. Embodied cognition. Humanoid robotics. | |Action and intention recognition. Embodied cognition. Humanoid robotics. | ||
Line 262: | Line 275: | ||
|Perspective taking using the ICL library | |Perspective taking using the ICL library | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | TBD |
− | | | + | | 12 |
| | | | ||
| | | | ||
Line 271: | Line 284: | ||
| | | | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
− | | | + | | |
− | | | + | | 13 |
| | | | ||
| | | |
Revision as of 10:47, 16 January 2017
Mini 1: Cognitive Robotics: Foundations
Date | Lecture | Topic | Material covered | Required hardware | Required software | Reading | Homework exercises | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tues. 17 Jan. | 1 | Introduction | Motivation. Goals of the course. Syllabus and lecture schedule. Course operation. Industrial requirements for cognitive robots. Artificial cognitive systems. Cognitivist, emergent, and hybrid paradigms in cognitive science. Autonomy. AI and cognition in robotics. Software development tools for assignments. | None | None | Lecture 1 Slides. Vernon (2014), Chapters 1, 2, and 4. | Install software tools and run example assignment0 programs. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 19 Jan. | 2 | Robot vision I | Computer vision. Optics, sensors, and image formation. Image acquisition. Fundamentals of image processing. Segmentation and edge detection. Introduction to OpenCV. | USB camera | OpenCV | Vernon (1991), Sections 2.2.1, 2.2.2, 3.1, 4.1, 4.2, 5.1, 5.2, 5.3.1. | Image acquisition and image processing using OpenCV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 24 Jan. | 3 | Robot vision II | Segmentation. Hough transform: line, circle, and generalized transform; extension to codeword features. Colour-based segmentation. | USB camera | OpenCV | Szeliski (2010), Sections 3.1.2, 3.3.4, 4.3.2. Vernon (1991), Section 3.1, 3.2, 3.3, 4.2.1, 4.2.2, 5.3, 6.4. | Hough transforms and colour segmentation using OpenCV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 26 Jan. | 4 | Robot vision III | Object recognition. Interest point operators. Gradient orientation histogram - SIFT descriptor. Colour histogram intersection. Haar features, boosting, face detection. | USB camera | OpenCV, Vienna University of Technology BLORT Library | Szeliski (2010), Sections 4.1.2, 4.1.3, 4.1.4, 4.1.5, 14.1.1. | Face detection and object recognition using OpenCV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 31 Jan. | 5 | Robot vision IV | Homogeneous coordinates and transformations. Perspective transformation. Camera model and inverse perspective transformation. Stereo vision. Epipolar geometry. Structured light & RGB-D cameras. | USB camera | OpenCV | Szeliski (2010), Sections 2.1, 11.1, 11.2, 11.3. Vernon (1991), Section 8.6, 9.4.2. | Camera calibration | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 2 Feb. | 6 | Robot vision V | Plane pop-out. RANSAC. Differential geometry. Surface normals and Gaussian sphere. Point clouds. 3D descriptors. | Kinect RGB-D sensor | Technische Universität Wien RGB-D Segmentation Library and V4R Library | Szeliski (2010), Sections 12.4. Point Cloud Library tutorial. | Analysis of point cloud data from RGB-D camera | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 7 Feb. | 7 | Robot vision VI | Visual attention. Spatial & selective attention. Saliency functions. Selective Tuning. Overt attention. Inhibition of return. Habituation. Top-down attention. | USB camera | CINDY cognitive architecture | Implementation of a saliency function for covert attention | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 9 Feb. | 8 | Mobile robots I | Differential drive locomotion. Forward and inverse kinematics. Holonomic and non-holonomic constraints. Cozmo mobile robot. | Anki Cozmo mobile robot | Anki Cozmo SDK, OpenCV | Python tutorial. Cozmo SDK API. OpenCV Python tutorial. | Cozmo locomotion. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 14 Feb. | 9 | Mobile robots II | Relative and absolute position estimation. Odometry. | Anki Cozmo mobile robot | Anki Cozmo SDK, OpenCV | Python tutorial. Cozmo SDK API. OpenCV Python tutorial. | Cozmo landmark recognition. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 16 Feb. | 10 | Mobile robots III | Map representation. Probabilistic map-based localization. Landmark-based localization. | Anki Cozmo mobile robot | Anki Cozmo SDK, OpenCV | Python tutorial. Cozmo SDK API. OpenCV Python tutorial. | Cozmo landmark recognition | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 21 Feb. | 11 | Mobile robots IV | SLAM: simultaneous localization and mapping. Extended Kalman Filter (EKF) SLAM. Visual SLAM. Particle filter SLAM. | Anki Cozmo mobile robot | Anki Cozmo SDK, OpenCV | Python tutorial. Cozmo SDK API. OpenCV Python tutorial. | Cozmo object recognition | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 23 Feb. | 12 | Mobile robots V | Graph search path planning. Potential field path planning. Navigation. Obstacle avoidance. Object search. | Anki Cozmo mobile robot | Anki Cozmo SDK, OpenCV | Python tutorial. Cozmo SDK API. OpenCV Python tutorial. | Cozmo navigation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 18 Feb. | 13 | Robot arms I | Homogeneous transformations. Frame-based pose specification. Denavit-Hartenberg specifications. Robot kinematics. | Lynxmotion 5DoF arm, Arduino interface | Arduino sketch programs for Lynxmotion | Paul (1981), Chapters 1 & 2. | Move end-effector along various paths in joint space | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 2 Mar. | 14 | Robot arms II | Analytic inverse kinematics. Iterative approaches. Kinematic structure learning. Kinematics structure correspondences. | Lynxmotion 5DoF arm, Arduino interface | Arduino sketch programs for Lynxmotion | Paul (1981), Chapter 3. | Move end-effector along various paths in Cartesian frame of reference | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tues. 7 Mar. | 15 | Robot arms III | Robot manipulation. Frame-based task specification. Vision-based pose estimation. | Lynxmotion 5DoF arm, Arduino interface | Arduino sketch programs for Lynxmotion | Vernon (1991), Sections 8.1-8.4. | Compute the pose of a light cube | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thurs. 9 Mar. | 16 | Robot arms IV | Programming by demonstration. Language-based programming. | Lynxmotion 5DoF arm, Arduino interface | Arduino sketch programs for Lynxmotion | Vernon (1991), Sections 8.1-8.4 | Implement a program to move light cube from one position/pose to another position/pose
Mini 2: Cognitive Robotics: Principles and Practice
Back to Cognitive Robotics |