Difference between revisions of "Applied Computer Vision Lecture Schedule"
From David Vernon's Wiki
(Created page with "Under construction ... please check back again later.") |
|||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- __NOTOC__ --> | |
+ | <div style="float:right;">__TOC__</div> | ||
+ | <span style="color:#AB0000" ><span style="font-size:10px">|</span></span><span style="color:#000000" ><span style="font-size:10px"><span style="text-decoration:underline">CARNEGIE MELLON UNIVERSITY AFRICA</span></span></span><span style="color:#AB0000" ><span style="font-size:10px">|</span></span> | ||
+ | |||
+ | <small> | ||
+ | {| class="wikitable" | ||
+ | ! scope="col" style="width: 7%;" | Date <!-- 7% --> | ||
+ | ! scope="col" style="width: 3%;" | Lecture <!-- 3% --> | ||
+ | ! scope="col" style="width: 20%;" | Topic <!-- 14% --> | ||
+ | ! scope="col" style="width: 30%;" | Material covered <!-- 50% --> | ||
+ | ! scope="col" style="width: 20%;" | Reading <!-- 13% --> | ||
+ | ! scope="col" style="width: 20%;" | Assignments <!-- 13% --> | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 29 Aug. | ||
+ | | 1 | ||
+ | | Overview | ||
+ | | Human and computer vision | ||
+ | |[http://www.vernon.eu/ACV/ACV_01.pdf Lecture 1 Slides]. Szeliski 2010, Sections 1.1 and 1.2. Kragic and Vincze, 2010. <!-- [http://www.cs.ubc.ca/~lowe/vision.html David Lowe's website of industrial vision systems]. --> | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 31 Aug. | ||
+ | | 2 | ||
+ | | Software tools | ||
+ | | OpenCV, Software development tools for course work | ||
+ | | [http://www.vernon.eu/ACV/ACV_02.pdf Lecture 2 Slides]. | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 5 Sept. | ||
+ | | 3 | ||
+ | | Optics, sensors, and image formation | ||
+ | | Illumination, projections, lenses, Gauss lens equation, field of view, depth of field, CMOS and CCD sensors, colour sensors, noise, resolution. | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 7 Sept. | ||
+ | | 4 | ||
+ | | Image acquisition and image representation | ||
+ | | Sampling and quantization, Shannon's sampling theorem, Nyquist frequency, Nyquist sampling rate, aliasing, resolution, space-variant sampling, log-polar images, dynamic range, colour spaces: HIS, HLS, HSV | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 12 Sept. | ||
+ | | 5 | ||
+ | | Image processing | ||
+ | | Point & neighbourhood operations, image filtering, convolution, Fourier transform | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 14 Sept. | ||
+ | | 6 | ||
+ | | Image processing | ||
+ | | Morphological operations | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 19 Sept. | ||
+ | | 7 | ||
+ | | Image processing | ||
+ | | Geometric operations | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 21 Sept. | ||
+ | | 8 | ||
+ | |Segmentation | ||
+ | |Region-based approaches, binary thresholding, connected component analysis | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 26 Sept. | ||
+ | | 9 | ||
+ | | Segmentation | ||
+ | | Edge detection | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 28 Feb. | ||
+ | | 10 | ||
+ | | Segmentation | ||
+ | | Colour-based approaches; k-means clustering | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 3 Oct. | ||
+ | | 11 | ||
+ | | Image features | ||
+ | | Harris and Difference of Gaussian interest point operators | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 5 Oct. | ||
+ | | 12 | ||
+ | | Image features | ||
+ | | SIFT feature descriptor | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 10 Oct. | ||
+ | | 13 | ||
+ | | Object recognition | ||
+ | | Template matching; normalized cross-correlation; chamfer matching | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 12 Oct. | ||
+ | | 14 | ||
+ | | Object recognition | ||
+ | | 2D shape features; statistical pattern recognition | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 17 Oct. | ||
+ | | 15 | ||
+ | | Object recognition | ||
+ | | Hough transform for parametric curves: lines, circles, and ellipses | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 19 Oct. | ||
+ | | 16 | ||
+ | | Object recognition | ||
+ | | Generalized Hough transform; extension to codeword features | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 24 Oct. | ||
+ | | 17 | ||
+ | | Object recognition | ||
+ | | Colour histogram matching and back-projection | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 26 Oct. | ||
+ | | 18 | ||
+ | | Object recognition | ||
+ | | Haar features and boosted classifiers | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 31 Oct. | ||
+ | | 19 | ||
+ | | Object recognition | ||
+ | | Histogram of Oriented Gradients (HOG) feature descriptor | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 2 Nov. | ||
+ | | 20 | ||
+ | | Video image processing | ||
+ | | Background subtraction and object tracking | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 7 Nov. | ||
+ | | 21 | ||
+ | | 3D vision | ||
+ | | Homogeneous transformations. Perspective transformation. Camera model and inverse perspective transformation | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 9 Nov. | ||
+ | | 22 | ||
+ | | Stereo vision. | ||
+ | | Stereo correspondence, Epipolar geometry | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 14 Nov. | ||
+ | | 23 | ||
+ | | Optical flow | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 16 Nov. | ||
+ | | 24 | ||
+ | | Visual attention | ||
+ | | Saliency, Bottom-up and top-down attention | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 21 Nov. | ||
+ | | 25 | ||
+ | | Clustering, grouping, and segmentation | ||
+ | | Gestalt principles. Clustering algorithms | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 23 Nov. | ||
+ | | 26 | ||
+ | | Object recognition in 3D | ||
+ | | Object detection, object recognition, object categorisation | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 28 Nov. | ||
+ | | 27 | ||
+ | | Affordances | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 30 Nov. | ||
+ | | 28 | ||
+ | | Computer vision and machine learning | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Tue. 5 Dec. | ||
+ | | 29 | ||
+ | | Computer vision and machine learning | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="vertical-align: top;" | ||
+ | | Thur. 7 Dec. | ||
+ | | 30 | ||
+ | | Computer vision and machine learning | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |} | ||
+ | </small> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | Back to [http://www.vernon.eu/ACV.htm Applied Computer Vision] |
Latest revision as of 12:52, 22 August 2017
|CARNEGIE MELLON UNIVERSITY AFRICA|
Date | Lecture | Topic | Material covered | Reading | Assignments |
---|---|---|---|---|---|
Tue. 29 Aug. | 1 | Overview | Human and computer vision | Lecture 1 Slides. Szeliski 2010, Sections 1.1 and 1.2. Kragic and Vincze, 2010. | |
Thur. 31 Aug. | 2 | Software tools | OpenCV, Software development tools for course work | Lecture 2 Slides. | |
Tue. 5 Sept. | 3 | Optics, sensors, and image formation | Illumination, projections, lenses, Gauss lens equation, field of view, depth of field, CMOS and CCD sensors, colour sensors, noise, resolution. | ||
Thur. 7 Sept. | 4 | Image acquisition and image representation | Sampling and quantization, Shannon's sampling theorem, Nyquist frequency, Nyquist sampling rate, aliasing, resolution, space-variant sampling, log-polar images, dynamic range, colour spaces: HIS, HLS, HSV | ||
Tue. 12 Sept. | 5 | Image processing | Point & neighbourhood operations, image filtering, convolution, Fourier transform | ||
Thur. 14 Sept. | 6 | Image processing | Morphological operations | ||
Tue. 19 Sept. | 7 | Image processing | Geometric operations | ||
Thur. 21 Sept. | 8 | Segmentation | Region-based approaches, binary thresholding, connected component analysis | ||
Tue. 26 Sept. | 9 | Segmentation | Edge detection | ||
Thur. 28 Feb. | 10 | Segmentation | Colour-based approaches; k-means clustering | ||
Tue. 3 Oct. | 11 | Image features | Harris and Difference of Gaussian interest point operators | ||
Thur. 5 Oct. | 12 | Image features | SIFT feature descriptor | ||
Tue. 10 Oct. | 13 | Object recognition | Template matching; normalized cross-correlation; chamfer matching | ||
Thur. 12 Oct. | 14 | Object recognition | 2D shape features; statistical pattern recognition | ||
Tue. 17 Oct. | 15 | Object recognition | Hough transform for parametric curves: lines, circles, and ellipses | ||
Thur. 19 Oct. | 16 | Object recognition | Generalized Hough transform; extension to codeword features | ||
Tue. 24 Oct. | 17 | Object recognition | Colour histogram matching and back-projection | ||
Thur. 26 Oct. | 18 | Object recognition | Haar features and boosted classifiers | ||
Tue. 31 Oct. | 19 | Object recognition | Histogram of Oriented Gradients (HOG) feature descriptor | ||
Thur. 2 Nov. | 20 | Video image processing | Background subtraction and object tracking | ||
Tue. 7 Nov. | 21 | 3D vision | Homogeneous transformations. Perspective transformation. Camera model and inverse perspective transformation | ||
Thur. 9 Nov. | 22 | Stereo vision. | Stereo correspondence, Epipolar geometry | ||
Tue. 14 Nov. | 23 | Optical flow | |||
Thur. 16 Nov. | 24 | Visual attention | Saliency, Bottom-up and top-down attention | ||
Tue. 21 Nov. | 25 | Clustering, grouping, and segmentation | Gestalt principles. Clustering algorithms | ||
Thur. 23 Nov. | 26 | Object recognition in 3D | Object detection, object recognition, object categorisation | ||
Tue. 28 Nov. | 27 | Affordances | |||
Thur. 30 Nov. | 28 | Computer vision and machine learning | |||
Tue. 5 Dec. | 29 | Computer vision and machine learning | |||
Thur. 7 Dec. | 30 | Computer vision and machine learning |
Back to Applied Computer Vision