Difference between revisions of "Applied Computer Vision Lecture Schedule"

From David Vernon's Wiki
Jump to: navigation, search
Line 84: Line 84:
 
| Mon. 2 Oct.
 
| Mon. 2 Oct.
 
| 11
 
| 11
|  
+
| Image features 
|  
+
| Harris and Difference of Gaussian interest point operators
 
|   
 
|   
 
|  
 
|  
Line 91: Line 91:
 
| Wed. 4 Oct.
 
| Wed. 4 Oct.
 
| 12
 
| 12
|   
+
Image features
|   
+
SIFT feature descriptor
 
|   
 
|   
 
|  
 
|  
Line 98: Line 98:
 
| Mon. 9 Oct.
 
| Mon. 9 Oct.
 
| 13
 
| 13
|
+
| Object recognition
|  
+
| Template matching; normalized cross-correlation; chamfer matching 
 
|   
 
|   
 
|  
 
|  
Line 105: Line 105:
 
| Wed. 11 Oct.
 
| Wed. 11 Oct.
 
| 14
 
| 14
|
+
| Object recognition
|
+
| 2D shape features; statistical pattern recognition 
 
|  
 
|  
 
|   
 
|   
Line 112: Line 112:
 
| Mon. 16 Oct.
 
| Mon. 16 Oct.
 
| 15
 
| 15
|   
+
Object recognition
|  
+
| Hough transform for parametric curves: lines, circles, and ellipses 
 
|  
 
|  
 
|   
 
|   
Line 119: Line 119:
 
| Wed. 18 Oct.
 
| Wed. 18 Oct.
 
| 16
 
| 16
|   
+
Object recognition
|  
+
| Generalized Hough transform; extension to codeword features 
 
|   
 
|   
 
|  
 
|  
Line 126: Line 126:
 
| Mon. 23 Oct.
 
| Mon. 23 Oct.
 
| 17
 
| 17
|
+
| Object recognition
|  
+
| Colour histogram matching and back-projection
 
|   
 
|   
 
|   
 
|   
Line 133: Line 133:
 
| Wed. 25 Oct.
 
| Wed. 25 Oct.
 
| 18
 
| 18
|  
+
| Object recognition
|  
+
| Haar features and boosted classifiers 
 
|   
 
|   
 
|  
 
|  
Line 140: Line 140:
 
| Mon. 30 Oct.
 
| Mon. 30 Oct.
 
| 19
 
| 19
|   
+
Object recognition
|  
+
| Histogram of Oriented Gradients (HOG) feature descriptor 
 
|  
 
|  
 
|   
 
|   
Line 147: Line 147:
 
| Wed. 1 Nov.
 
| Wed. 1 Nov.
 
| 20
 
| 20
|   
+
Video image processing
|   
+
| Background subtraction and object tracking  
 
|     
 
|     
 
|  
 
|  
Line 154: Line 154:
 
| Mon. 6 Nov.
 
| Mon. 6 Nov.
 
| 21
 
| 21
|   
+
3D vision
|  
+
| Homogeneous transformations. Perspective transformation. Camera model and inverse perspective transformation 
 
|  
 
|  
 
|   
 
|   
Line 161: Line 161:
 
| Wed. 8 Nov.
 
| Wed. 8 Nov.
 
| 22
 
| 22
|
+
| Stereo vision.
|   
+
| Stereo correspondence, Epipolar geometry  
 
|   
 
|   
 
|   
 
|   
Line 168: Line 168:
 
| Mon. 13 Nov.
 
| Mon. 13 Nov.
 
| 23
 
| 23
|   
+
| Optical flow  
 
|   
 
|   
 
|   
 
|   
Line 175: Line 175:
 
| Wed. 15 Nov.
 
| Wed. 15 Nov.
 
| 24
 
| 24
|   
+
Visual attention
|   
+
| Saliency, Bottom-up and top-down attention  
 
|   
 
|   
 
|   
 
|   
Line 182: Line 182:
 
| Mon. 20 Nov.
 
| Mon. 20 Nov.
 
| 25
 
| 25
|   
+
Clustering, grouping, and segmentation
|  
+
| Gestalt principles. Clustering algorithms 
 
|   
 
|   
 
|   
 
|   
Line 189: Line 189:
 
| Wed. 22 Nov.
 
| Wed. 22 Nov.
 
| 26
 
| 26
|   
+
Object recognition in 3D
|  
+
| Object detection, object recognition, object categorisation 
 
|   
 
|   
 
|  
 
|  
Line 196: Line 196:
 
| Mon. 27 Nov.
 
| Mon. 27 Nov.
 
| 27
 
| 27
|   
+
| Affordances  
 
|   
 
|   
 
|  
 
|  
Line 203: Line 203:
 
| Wed. 29 Nov.
 
| Wed. 29 Nov.
 
| 28
 
| 28
|   
+
| Computer vision and machine learning  
 
|   
 
|   
 
|  
 
|  
Line 210: Line 210:
 
| Mon. 4 Dec.
 
| Mon. 4 Dec.
 
| 29
 
| 29
|   
+
| Computer vision and machine learning  
 
|   
 
|   
 
|  
 
|  
Line 217: Line 217:
 
| Wed. 6 Dec.
 
| Wed. 6 Dec.
 
| 30
 
| 30
|   
+
| Computer vision and machine learning  
 
|   
 
|   
 
|  
 
|  

Revision as of 18:11, 20 August 2017

|CARNEGIE MELLON UNIVERSITY AFRICA|

Date Lecture Topic Material covered Reading Assignments
Mon. 28 Aug. 1 Overview Human and computer vision Lecture 1 Slides. Szeliski 2010, Sections 1.1 and 1.2. Kragic and Vincze, 2010.
Wed. 30 Aug. 2 Software tools OpenCV, Software development tools for course work Lecture 2 Slides.
Mon. 4 Sept. 3 Optics, sensors, and image formation
Wed. 6 Sept. 4 Image acquisition and image representation
Mon. 11 Sept. 5 Image processing Point & neighbourhood operations, image filtering, convolution, Fourier transform
Wed. 13 Sept. 6 Image processing Morphological operations
Mon. 18 Sept. 7 Image processing Geometric operations
Wed. 20 Sept. 8 Segmentation Region-based approaches, binary thresholding, connected component analysis
Mon. 25 Sept. 9 Segmentation Edge detection
Wed. 27 Feb. 10 Segmentation Colour-based approaches; k-means clustering
Mon. 2 Oct. 11 Image features Harris and Difference of Gaussian interest point operators
Wed. 4 Oct. 12 Image features SIFT feature descriptor
Mon. 9 Oct. 13 Object recognition Template matching; normalized cross-correlation; chamfer matching
Wed. 11 Oct. 14 Object recognition 2D shape features; statistical pattern recognition
Mon. 16 Oct. 15 Object recognition Hough transform for parametric curves: lines, circles, and ellipses
Wed. 18 Oct. 16 Object recognition Generalized Hough transform; extension to codeword features
Mon. 23 Oct. 17 Object recognition Colour histogram matching and back-projection
Wed. 25 Oct. 18 Object recognition Haar features and boosted classifiers
Mon. 30 Oct. 19 Object recognition Histogram of Oriented Gradients (HOG) feature descriptor
Wed. 1 Nov. 20 Video image processing Background subtraction and object tracking
Mon. 6 Nov. 21 3D vision Homogeneous transformations. Perspective transformation. Camera model and inverse perspective transformation
Wed. 8 Nov. 22 Stereo vision. Stereo correspondence, Epipolar geometry
Mon. 13 Nov. 23 Optical flow
Wed. 15 Nov. 24 Visual attention Saliency, Bottom-up and top-down attention
Mon. 20 Nov. 25 Clustering, grouping, and segmentation Gestalt principles. Clustering algorithms
Wed. 22 Nov. 26 Object recognition in 3D Object detection, object recognition, object categorisation
Mon. 27 Nov. 27 Affordances
Wed. 29 Nov. 28 Computer vision and machine learning
Mon. 4 Dec. 29 Computer vision and machine learning
Wed. 6 Dec. 30 Computer vision and machine learning



Back to Applied Computer Vision